
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Adapted Gravitational Search Algorithm Using

Multiple Populations to Solve Exam Timetable

Scheduling Problems

Antonius Bima Murti Wijaya

Informatics Engineering Department

UKRIM University
Yogyakarta, Indonesia

bimamurti@ukrimuniversity.ac.id

Febe Maedjaja

Informatics Engineering Department

UKRIM University
Yogyakarta, Indonesia

febe@ukrimuniversity.ac.id

Abstract — Since timetable scheduling is a discrete NP-Hard

problem, it becomes a complicated case to be solved by a heuristic

approach. Gravitational Search Algorithm (GSA) was developed
with the main objective to solve a continuous problem as long as it

could be defined in a mathematical equation, and yet it has the

potential to solve a discrete problem. This research shows the

adaptation of GSA for a discrete environment involving multiple

populations in GSA in order to enlarge the searching space in
exam timetable scheduling problems. Every best solution from

each population will be injected to each population to give

additional potential members. The adaptation strategy could be

implemented in an exam timetable scheduling problem, resulting

in an improved value of fitness. The multiple populations strategy
helps the development of fitness factor by providing potential

solutions from other populations, thus escaping the trap of local

optimum solutions.

Keywords—Metaheuristic; GSA; Multiple Populations;

Scheduling Problem

I. INTRODUCTION

Timetable scheduling problem is a discrete combinatorial case

that often occurs in education organizations. Since a timetable

scheduling problem is a Non-Deterministic Polynomial Hard

Problem (NP-Hard), it becomes a complicated case to be solved

by a heuristic approach. Linear Programming as an Exact

Mathematical Solver could sometimes solve this case, but it

could not give an approach if the perfect solution does not exist

[1].

Heuristic base algorithms are designed to solve complex

problem even if the perfect solution does not exist. One of the

heuristic base algorithms is Gravitational Search Algorithm

(GSA). GSA was first developed in 2009 [2]. The main

objective of this algorithm is to solve a continuous problem as

long as it could be defined in a mathematical equation. This

algorithm is based on the Particle Swarm Algorithm, and

inspired by Newton’s gravitational law. The interesting part of

GSA is that every iteration in GSA will move all of the

solutions in a population. GSA utilizes the best solution as the

main mass to attract the other solutions to come closer, although

they are also distracted by other heavy solutions that affect their

position and mass.

This idea potentially works in a discrete environment as well.

Converting such a continuous heuristic algorithm into a discrete

algorithm has the difficulties of adapting while keeping the

concept of the algorithm. To solve this problem binary GSA has

been suggested [3][4]. GSA works by moving an object’s

position based on its acceleration and velocity towards the

heavier object. This concept is very clear to solve in a

continuous environment, but in a discrete environment what is

defined as positions, accelerations, velocity and direction

toward center of gravitations are not clear. Mapping the terms

in GSA is needed to make this algorithm work in a

combinatorial case such as timetable scheduling problem. Since

a fast convergence often occurs with GSA, modifying the

algorithm by developing such a strategy is needed [5][6]. In

some cases, GSA is developed by combining it with other

algorithms to improve their result [7][8]. GSA works for only

one population and develops one best solution. In this research

multiple populations would be developed to give different

characteristic of the best solutions. This effort has been done

using Particle Swarm Optimization (PSO) which shows a better

result compared to the original algorithm. Moreover, a variety

of strategies have been developed for multiple populations

purposes [9][10][11][12].

 Exam timetable scheduling problem has the sensitivity,
that once a schedule is changed, it could affect other resources

and even decrease or increase its fitness dramatically. The
connection between resources gets stronger when the schedule

is tighter. Combining different characteristics of a schedule is
expected to give improvement in exploration ability, even if it is

already in exploitation phase. This research adapts the GSA for

the discrete problem of exam timetable scheduling at UKRIM
University using multiple populations to improve the schedule

fitness by utilizing the different characteristics produced from
each population, and will measure the schedule generation

performance.

II. SCHEDULLING PROBLEM

Scheduling problem is a combinatorial problem of

arranging activities with limited resources. The limited

resources are developed by the system boundary. This problem

could be solved using iterative mathematics and heuristic

search, and Linear Programming is an iterative mathematics

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.

method that is able to solve this problem. This algorithm could

give the optimize schedule if the solution exists, but in a

scheduling problem the solution does not always exist [1]. On

the other hand, the heuristic method offers an approach as an

alternative solution. This method has solved some scheduling

problem such as production scheduling problem using artificial

bee colony combined with genetics algorithm [13]. A

development using a heuristic search method, Tabu Search, has

been used to solve the lecture scheduling problem at university

of Malaya by modifying the neighbor solutions [14]. Genetics

Algorithm, which is a later generation of tabu algorithm, has

also been developed into Cuckoo Search to solve NP-Hard

problems such as the problem of university timetable

scheduling [15] [16].Compared to the previous research about

adapted cuckoo search[15], this research also include how the

modified algorithm combined using multiple population

strategy, that resulted in fitness score performance rise.

 The development of GSA which is based on Particle Swarm

algorithm [1] turns to be the competition for the Cuckoo Search
algorithm. In recent years the performance of Cuckoo and GSA

have been tested for predicting academic performance, where
GSA is claimed to be inferior to Cuckoo [17]. Developing a

strategy in an algorithm becomes an option in the maturing
process of the algorithm to solve the scheduling problem [18].

III. EXAM TIME-TABLE SCHEDULLING PROBLEM

Exam timetable scheduling problem is a variant of

timetable scheduling problem. Exam timetable scheduling

problem consists of two constraints: soft and hard constraints,

and is categorized as a constraint satisfaction problem [19]. A

violation of a soft constraint results in penalty, while a hard

constraint must not be violated. However, in this research, a

hard constraint results in a much heavier penalty than soft -

constraint to improve the combining flexibility. The problem

deals with how it is modelled and how the algorithm solves the

schedule [20]. Instead of using greedy algorithm and put the

hard-constraint to develop the initial population, this research

was intended to investigate the heuristic evolving performance.

 In the case of UKRIM University, the final and midterm

exams are organized into four sessions per day for two weeks.

There are two different kinds of room: a classroom that could

be used for theory exam, and a laboratory that could handle

theory and practice exam. This research identifies the hard and

soft constraints for this scheduling problem, and the rule to

develop the solutions.

The soft constraints are:

1. A maximum of one subject for students in the same year

is allowed in one day. (penalty score: 3)

2. A big capacity classroom should be used for a big class,

reducing the use of a big capacity classroom for a small

class. (penalty score: 2)

3. Saturday is an alternative day for holding an exam.

(penalty score: 2)

4. Exams for difficult subjects should start in the morning .

(penalty score : 2)

5. Requested time for exam should be granted. (penalty

score: 5)

The hard constraints are:

1. The classroom must be enough to fit the size of class.

(penalty score: 15)

2. Practicum Exam must be held in a laboratory. (penalty

score: 15).

3. The parallel classes must start at the same time. (penalty

score : 15)

The rule to develop the solutions is that only one subject can

be held per room per session.

IV. GRAVITATIONAL SEARCH ALGORITHM

GSA is a metaheuristic algorithm based on gravity law to solve

searching problem, firstly introduce in 2009 by Rashedi [2].

GSA is based on Particle Swarm Optimization idea. The

application of this algorithm varies in searching problems, such

as scheduling problem in Air Traffic Control (ATC) to optimize

air plane fuel, ticket price and the ATC load itself [21], in

Allocation Energy problem [22], and in Production problem

where GSA is said to be better than Genetics and Particle

Swarm [23]. The problem of searching for Multiple Objectives

is another problem that can be solved by GSA [24].

In GSA the fitness of a solution is referred to as the particle

mass. Therefore, a best solution is a particle with the biggest

mass which attracts other objects around it toward itself by

changing their acceleration, velocity and distance.

Gravitational force of two particles is directly proportional to

their mass product and inversely proportional to the square of

distance.

𝐹 = 𝐺
𝑀1 𝑀2

𝑅2 (1)

Every particle/solution (i) is represented by

 𝑋𝑖 = 𝑥𝑖
1,… . , 𝑥 𝑖

𝑑 , … , 𝑥 𝑖
𝑛

Where, i stands for the order of the particle/solution, d is the

order of particle’s dimension, and n is the number of

dimensions. Therefore the value of force in ‘t’ times, against ‘i’

and ‘j’ mass is

𝐹𝑖𝑗
𝑑 (𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖
(𝑡) ×𝑀𝑎𝑗

(𝑡)

𝑅𝑖𝑗(𝑡)+𝜀
(𝑥𝑗

𝑑 (𝑡) − 𝑥 𝑖
𝑑 (𝑡)) (2)

Where,

Maj is the active gravitation mass connected with particle j,

Mpi is the passive gravitational mass connected with particle i,

G(t) is a constant gravitation at time t; the value of the first G is

initialized at the beginning, and it is subtracted over time,

 is a small constant, and

Rij(t) is the Euclidian distance between two particles.

𝑅𝑖𝑗 = √∑(𝑥 𝑖
(𝑡) − 𝑥𝑗(𝑡))2 (3)

In order to give a stochastic nuance, the value of total force at

particle ‘i’ and dimension ‘d’ becomes

𝐹𝑖
𝑑 (𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗 𝐹𝑖𝑗

𝑑 (𝑡)𝑁
𝑗=1,𝑗≠𝑖 (4)

Random function is given with interval 0 and 1, and based on

Newton’s Second Law of Motion, the acceleration function

becomes:

𝑎𝑖
𝑑 (𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
 (5)

where Mii(t) is the inertia weight from particle ‘i’.

The velocity and its new position become:

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.

𝑉𝑖
𝑑 (𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑 (𝑡) + 𝑎𝑡
𝑑 (𝑡) (6)

𝑥 𝑖
𝑑 (𝑡 + 1) = 𝑥 𝑖

𝑑 (𝑡) + 𝑣𝑖
𝑑 (𝑡 + 1) (7)

The value of Mi(t) is calculated by dividing average mass

in a particle with all particles:

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖 (𝑡)−𝑤𝑜𝑟𝑠𝑡 (𝑡)

𝑏𝑒𝑠𝑡 (𝑡)−𝑤𝑜𝑟𝑠𝑡 (𝑡)
 (8)

𝑀𝑖
(𝑡) =

𝑚𝑖 (𝑡)

∑ 𝑚𝑗 (𝑡)𝑁
𝑗

 (9)

V. ADAPTING GSA IN COMBINATORIAL CASE

GSA is based on Particle Swarm Optimization (PSO)

Algorithm, while the main objective of PSO is to solve

problems in a continuous environment. Hence, an adaptation is

needed to convert the algorithm to fit in discrete environments.

This adaptation needs to maintain the main idea of the

algorithm. A similar effort to adapt continuous metaheuristic

for discrete cases had also been done by Goldbarg and Yan

[25][26]. Goldbarg focused on how to generate new particle in

PSO by the new velocity and distance, while on the other hand

Yan focused on the algorithm and strategy for the particles to

be able to avoid worst solutions by using the experience of other

particles. This research adapts the algorithm to edit the function

and uses the Goldbarg model to generate new particle but in

GSA and scheduling case.

Firstly in this exam timetable scheduling problem the solutions

or particles is a combination between exam subject, room, and

session which fulfill the hard-constraints, and then the fitness is

calculated based on the soft constraints that have been violated.

Mass is inversely proportional against fitness; with a higher

violation against the soft constraints, a higher fitness is gained.

In the position shift model that is proposed by Goldbarg, every

element will be shifted closely to target solution with min imum

cost.

Figure 1. Path Relinking (Goldbarg Et Al, 2008)

In the swarm concept the first solutions will not be directed

100% to target solutions, so the third shift on Figure 1 which

shows the shifting phases in a Travelling Salesman Problem

will not be executed by algorithm. The velocity and the distance

will determine how many shifting will happen between two

particles. In GSA the particle does not go to the best solution

directly but slightly deviates due to other particles that also have

a gravitational force.

The value of Euclidean distance for this case becomes the

difference between one exam schedule solution to another

solution. The distance has integer value since it counts the

difference between two schedule solutions. Therefore, the

gravity force from each particle signifies the ability of a

solution to move into another position and is most affected by

the heaviest mass. The multiplication operator in Formula 2

becomes the multiplication of normalized weight, and the

difference between xj with xj is the distance between solutions

in the same dimension. Furthermore, the value of F is a decimal

value that shows how many elements will be exchanged in a

solution. The total force (Formula 4) will summarize all

gravitational force in a particle, and to gain the acceleration this

total force value will be divided by its inertia mass.

Acceleration in this context means acceleration to shift.

A particle should not go directly into the particle with the

biggest mass. It therefore needs to develop a temporary target

solution by combining a part of the biggest mass particle with

a smaller part of other particles that affect this particle. After

obtaining the force from all particles, then all the force values

will be normalized. The force that reaches the threshold will be

used to affect the temporary target solutions. The particle will

not be converted into temporary target solutions 100%. The

acceleration will be converted into velocity using Formula 6

and converted to distance using Formula 7. The value of

distance will determine how much shift or crossover will

happen from a particle to it is target solutions, and the path-

relinking on Figure 1 can be implemented. Because it is not

possible to convert the position in this combinatorial case into

a decimal value, in this research the subtraction in Formula 1 is

removed.

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖(𝑡)×𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡)+𝜀
 (10)

VI. THE ADAPTATION STRATEGY IN SCHEDULLING PROBLEM

The steps in the strategy to convert the traditional GSA to solve

exam timetable scheduling problem are as follows:

Step 1 Generate the Population

Generate n random solutions without considering the hard and

soft constraints. The solutions will then move or shift flexib ly ,

but consequently the size of searching space becomes bigger.

Step 2 Calculate the fitness or mass

Calculate the fitness of the schedule by giving score to every

schedule solution that has been generated based on the soft and

hard constraints. There are two kinds of calculations: giving

penalty for every constraint violation, and giving reward for

every fulfilled constraint. This research prefers to use penalty

calculation in order to monitor violations with the aim to reduce

it. The calculation, however, is reversed by subtracting the high

value that is not far away from best reward with its penalty. This

is necessary to maintain the mass concept in GSA, that the

bigger mass has better fitness.

Step 3 Initialize the GSA variable

Initialize the value of velocity. The G constant (Formula 2) will

be removed from the calculation because in a combinatorial

case it does not make any big impact to the shifting phase of

solutions.

Step 4 Calculate the Force, the Inertia Mass and Accelerations

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.

Calculate the gravitational force for every solutions (j) against

every other solutions (i) using Formula 10. If i equals with j the

distance is 0. Then calculate the inertia mass using Formula 8,

and calculate the acceleration using Formula 5. If the inertia

mass is less than 0 then the inertia mass is assigned with small

decimal (0.01), and if the inertia mass is equal with 1 then the

acceleration becomes 0.

Step 5 Determine the number of shifting

 To determine the number of shifting for every solution (j)

against every other solution (i) this strategy considers to use the

velocities of every solution (i) in solution (j). Every solution (i)

has the right to shift from 0 to n combinations, while a bigger n

could lead the solution into conformity with the target particle

quickly. Then convert the velocity into shift combinations from

0 to n by mapping it into a defined range for every number. As

an example, shift is 0 if the velocity value is between 0-1, and

shift is 1 if the value of velocity is between 1-5. This shifting

number will be used to develop the deviated solutions. This step

will be repeated for every solution (j). Furthermore, the solution

that has the biggest mass will have less move, unless it has

worthy competitors.

Step 6 Develop the deviated solutions as addressed solutions

Get n random parts from the exam schedule from every solution

(j) that will affect the current solution (i). This step uses one-

way evaluations, because the current solutions do not interfere

the other solutions to select their part. Then, put the chosen part

to the deviated schedule without redundancy.

This step will be repeated for every solution (j).

Step 7 Shift the current solution toward the deviated solution.

The deviated solution that has been developed will replace the

corresponding part in the current solutions. This step will be

repeated for every solution (j).

After step 7 this algorithm will be repeated from step 4 until the

maximum iteration or the aimed fitness/mass value has been

reached.

The fitness graph in Figure 2 shows how the fitness develop

from 15 solutions for 30 iterations. The highest number of

fitness is reached in the latest iteration. The peak is not always

found in the last iteration, but it could also be found before. This

happens because the population is still able to move the biggest

mass, as long as it finds a worthy competitor, and the shifting

could lead into higher or lower fitness. In the other word the

fitness graph does not always have an upward trend.

Furthermore, increasing the number of solutions and iterations

cannot guarantee the finding of a better fitness. It does,

however, improve the chance of it. Figure 3 shows the fitness

development with more initial populations and iterations. The

fitness or the mass score develops to more than 1700. The

highest fitness is not always the same, but varies depending on

the initial populations. This algorithm adaptation strategy will

move every solution based on the solutions that have already

been generated in the populations. The solutions would not

move their exam subject if no exam subject is plotted in the

resource such as room and session. As an addition, if there is no

subject being plotted in the resource then there is no experience

or assessment. These conditions could be an advantage or

disadvantage, because every chance should be tried in the case

of combinatorial problems. In the concept of GSA there is no

evidence that a particle will move without being interfered by

another particle.

The different results for every execution caused by the random

generation in the initial population leads this research to extend

an additional strategy by using multiple populations.

Figure 2 .Fitness graph with 15 solutions and 30 iterations

Figure 3. Fitness graph with 70 Solutions and 500 iterations

VII. THE MULTIPLE POPULATION STRATEGY

All particles in a population will affect each other, and they

develop the biggest mass or fitness together. The iterations

create the development pattern and have less move for the

highest solutions in the last iteration (see Figure 3). However,

the populations need potential input from different patterns as a

different point of view to develop the solutions. This strategy is

adopted from Multi Swarm Optimization that uses more than 1

swarm to develop the searching space.

Step 1 The strategy start with develop p population and each

population will develop n solutions.

Step 2 Execute every population using GSA algorithm.

Step 3 When all the populations have been executed and already

in convergence, inject the best solution from each population to

all of the populations as additional solutions

Step 4 execute every solution again using GSA

Step 5 Get the best solutions between all of the populations

The second execution could use a different maximum iteration

depending on the value of p. The best solution from p

populations is the final result. This process is shown in Figure

4.

Figure 5 shows the result with 10 populations (from 0 to 9) that

have been optimized using GSA, and the next populations are

the 10 initial population that have been injected with the best

solutions from every initial population, then executed again

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.

using GSA. The result shows a gradual increase of fitness score

at the end of the process, from 1742 points as the best solution

from the initial population to 1793 points as global best. Since

the other populations cannot find more than 1779 points in that

state, the best solution is steady. The Global Best was resulted

in 9 hard-constraints violations. These violations happen as

consequences for letting the hard-constraint behave like soft-

constraint with bigger penalty.

The graph in Figure 6 shows the best solutions before and after

being injected by the best solutions in each populations in 15

experiments. The graph shows increasing trend of fitness in

most of experiments after being injected. Yet, there is an

anomaly: the score did not change in the second experiment ,

this is due to the populations could not find the best, even after

injection.

This method requires more time and computation effort,

because it will execute more populations in order to escape

from local optimum. If there is 10 populations in the

initialization state, then it needs 10 times computation effort

than single GSA with the same number of iterations, plus

computation effort to execute again after being injected by best

solutions from another solution. However, after reach the

convergence state, GSA will get the same result for the rest of

the iterations, then with the same big number of iteration

between GSA and MPGSA, MPGSA will resulted in higher

fitness score.

Figure 4 Flowchart of Multi Populations GSA

Figure 5. Fitness graph with 10 populations, 70 solutions

each, 500 iteration each

Figure 6. Fitness graph Comparison between before and after

injection

VIII. CONCLUSION AND FURTHER RESEARCH

The adaptation strategy could be implemented in the exam

timetable scheduling problem and resulted in improving the

value of fitness/mass. Every solution will be involved with the

gravitational rule based on the mass of every solution to

develop the best solutions. The solutions will move their

particle based on the last path of other worth population’s

particles and will not move to the unexplored area Although the

key parts lay in the unexplored area, however, if the solutions

is not good enough, it will be ignored.

The multiple populations strategy helps the development of

fitness factor by providing potential solutions from other

populations, and resulted in improving fitness (with an average

of 32.26 points according to Figure 6), but definitely need more

computation effort.

There are also some aspects that need to be examined for further

research:

a. In the algorithm section, adding a strategy to move the

solutions without considering another neighbor solution

could be conducted in order to explore the unexplored area,

even if this violates the conceptual of GSA.

b. There is a need to explore the strategy to develop offspring

solutions in GSA.

 The strategy of multiple populations in this research could

be developed using multithreading technique, which allows

boosting by using General Processing Unit (GPU).

Developing another strategy and comparing it with current

strategy is also needed to find the best fitness.

c. This research also could be developed to investigate which

adaptation strategy is the best between the novel algorithm

such cuckoo search or the modified mature traditional

algorithm such as genetics algorithm.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Schimmelpfeng K and Helber S,”Application of a real-world
university-course timetabling model solved by integer programming”,
ORSpectrum 29, 783–803, 2007

[2] Rashedi E, Nezamabadi-pour H and Saryazdi S , “GSA: A

Gravitational Search Algorithm”. Elsevier Information Science, 179
2232-2248, 2009

[3] Goldbarg E F G, Givanaldo R de Souza and Goldbarg M C, “Particle

Swarm for the Traveling Salesman Problem”, ed Gottlieb J and Raidl
G R (Berlin Heidelberg: Springer Verlag) EvoCOP 2006, LNCS 3906
pp 99–110, 2006

[4] Razavi S F and Sajedi H, “Cognitive discrete gravitational search

algorithm for solving 0-1 knapsack problem”, Journal of Intelligent &
Fuzzy Systems 29(5) 2247-2258, 2015

[5] Weijia C U I and Yuzhu H E, ”A novel hybrid approach based on a
chaotic cloud gravitational search algorithm to complicated image

template matching”, Turkish Journal of Electrical Engineering &
Computer Sciences, vol 25, 4545-4557, 2017

[6] Aziz N A A, Ibrahim Z, Mubin M and Sudin S, “Adaptive switching
gravitational search algorithm: an attempt to improve diversity of

gravitational search algorithm through its iteration strategy”, Sadhana
Indian Academy of Sciences, vol 42(7), pp 1103–1121, 2017

[7] Fei S W, “Fault Diagnosis of Bearing by Utilizing LWT-SPSR-SVD-

Based RVM with Binary Gravitational Search Algorithm”, Shock and

Vibration, 2018*
[8] Mirhosseini M, “A clustering approach using a combination of

gravitational search algorithm and k-harmonic means and its

application in text document clustering”. Turkish Journal of Electrical
Engineering & Computer Sciences, Vol 25(2), 1251-1262, 2017

[9] Liu Q, Zhou B, Li S, Li A P, Zou P and Jia Y, “Community detection
utilizing a novel multi-swarm fruit fly optimization algorithm with

hill-climbing strategy”, Arabian Journal for Science and Engineering,
Vol 41(3), 807-828, 2016

[10] Serraji M, El Amine D O and Boumhidi J, “Multi swarm optimization
based adaptive fuzzy multi agent system for microgrid multi-objective

energy management”, International Journal of Knowledge-based and
Intelligent Engineering Systems, Vol 20(4), 229-243, 2016

[11] Alfarisy G A F, Mahmudy W F and Natsir M H,”Optimizing Laying

Hen Diet using Multi-Swarm Particle Swarm
Optimization”, TELKOMNIKA (Telecommunication Computing
Electronics and Control), Vol 16(4), 2018

[12] Liang J J, Pan Q K, T iejun C and Wang L,”Solving the blocking flow

shop scheduling problem by a dynamic multi-swarm particle swarm
optimizer”, The International Journal of Advanced Manufacturing
Technology, 55.5-8, pp 755-762, 2011 *

[13] Bulut O and Tasgetiren M C, “An artificial bee colony algorithm for

the economic lot scheduling problem”, International Journal of
Production Research 52(4) 1150–1170, 2014

[14] Shakir A, Belal A K, Shaker K and Jalab H, ”The Effect of
Neighborhood Structures on Tabu Search Algorithm in Solving

University Course T imetabling Problem”, International Conference
on Quantitative Sciences and Its Application. AIP Conf. Proc. 1635

657-664, 2014
[15] Teoh C K, Wibowo A and Ngadiman M S, “An Adapted Cuckoo

Optimization Algorithm And Genetic Algorithm Approach To The
University Course T imetabling Problem”, International Journal Of

Computational Intelligence And Applications, Imperial College Press
Vol 13(1), 1-13, 2014

[16] Yang X S and Deb S, ”Cuckoo search via Lévy flights”, World
Congress on Nature & Biologically Inspired Computing IEEE

Publications, pp 210–214, 2009

[17] Chen, Jeng-Fung Dan Quang Hung Do, “Training Neural Networks

To Predict Student Academic Performance: A Comparison Of Cuckoo

Search And Gravitational Search Algorithms”, International Journal

Of Computational Intelligence And Applications, Vol. 13, No. 1,Pp

1450005, 2014

 [18] Alzaqebah M and Abdullah S,”Hybrid bee colony optimization for
examination timetabling problems”, Computers & Operations

Research, Vol 54, 142-154, 2015

[19] Ho W K, Lim A and Oon W C, “Maximizing paper spread in
examination timetabling using a vehicle routing method Proc”, 13th
IEEE International Conference on Tools with Artificial Intelligence

(ICTAI) IEEE, 359-366, 2001
 [20] Elsaka T ,”Autonomous generation of conflict-free examination

timetable using constraint satisfaction modelling”, 2017 International
Artificial Intelligence and Data Processing (IDAP) Symp., IEEE 1-10,

2017
[21] Dastgerdi K, Mehrshad N and Farshad M,”A new intelligent approach

for air traffic control using gravitational search algorithm”, Sadhana

Indian Academy of Sciences, Vol 41(2), 183–191, 2016
[22] Rahman I, Vasant P M, Singh B S M and Wadud M A A, “Intelligent

Energy Allocation Strategy for PHEV Charging Station Using
Gravitational Search Algorithm”, 3rd International Conference on

Fundamental and Applied Sciences AIP Publishing , pp 52-59, 2014
[23] Pei J, Liu X and Pardalos P M,” Application of an effective modified

gravitational search algorithm for the coordinated scheduling problem
in a two-stage supply chain”, International Journal of Advanced

Manufacturing Technology Springer, Vol 70, 335–348, 2014
[24] Abbasian M A and Pour H N, “A Clustering Based Archive Multi

Objective Gravitational Search Algorithm”, Fundamenta Informaticae
Ios Press, Vol 138, 387–409, 2015

[25] Goldbarg E F G, Goldbarg M C and Souza G R, “Particle Swarm
Optimization Algorithm for the Traveling Salesman Problem”,
T raveling Salesman Problem ed Federico Greco ISBN: 978-953-7619-

10-7, 2008
[26] Yan X, Wu Q, Fan Y, Liang Q and Liu C, “An Improved Particle

Swarm Optimization Algorithm for Traveling Salesman Problems”,
International Journal of Control and Automation, SERSC, Vol, 10(2)

187-200, 2017

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2020 at 12:53:23 UTC from IEEE Xplore. Restrictions apply.

