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Abstract — Since timetable scheduling is a discrete NP-Hard 

problem, it becomes a complicated case to be solved by a heuristic 

approach. Gravitational Search Algorithm (GSA) was developed 
with the main objective to solve a continuous problem as long as it 

could be defined in a mathematical equation, and yet it has the 

potential to solve a discrete problem. This research shows the 

adaptation of GSA for a discrete environment involving multiple 

populations in GSA in order to enlarge the searching space in 
exam timetable scheduling problems. Every best solution from 

each population will be injected to each population to give 

additional potential members. The adaptation strategy could be 

implemented in an exam timetable scheduling problem, resulting 

in an improved value of fitness. The multiple populations strategy 
helps the development of fitness factor by providing potential 

solutions from other populations, thus escaping the trap of local 

optimum solutions.  

Keywords—Metaheuristic; GSA; Multiple Populations; 

Scheduling Problem 

I. INTRODUCTION 

Timetable scheduling problem is a discrete combinatorial case 

that often occurs in education organizations. Since a timetable 

scheduling problem is a Non-Deterministic Polynomial Hard  

Problem (NP-Hard), it becomes a complicated case to be solved 

by a heuristic approach. Linear Programming as an Exact  

Mathematical Solver could sometimes solve this case, but it  

could not give an approach if the perfect solution does not exist 

[1]. 

Heuristic base algorithms are designed to solve complex 

problem even if the perfect solution does not exist. One of the 

heuristic base algorithms is Gravitational Search Algorithm 

(GSA). GSA was first developed in 2009 [2]. The main  

objective of this algorithm is to solve a continuous problem as 

long as it could be defined in a mathematical equation. This 

algorithm is based on the Particle Swarm Algorithm, and 

inspired by Newton’s gravitational law. The interesting part of 

GSA is that every iteration in GSA will move all of the 

solutions in a population. GSA utilizes the best solution as the 

main mass to attract the other solutions to come closer, although 

they are also distracted by other heavy solutions that affect their 

position and mass.  

This idea potentially works in a discrete environment as well. 

Converting such a continuous heuristic algorithm into a discrete 

algorithm has the difficulties of adapting while keeping the 

concept of the algorithm. To solve this problem binary GSA has 

been suggested [3][4]. GSA works by moving an object’s 

position based on its acceleration and velocity towards the 

heavier object. This concept is very clear to solve in a 

continuous environment, but in a discrete environment what is 

defined as positions, accelerations, velocity and direction  

toward center of gravitations are not clear. Mapping the terms 

in GSA is needed to make this algorithm work in a 

combinatorial case such as timetable scheduling problem. Since 

a fast convergence often occurs with GSA, modifying the 

algorithm by developing such a strategy is needed [5][6]. In 

some cases, GSA is developed by combining it with other 

algorithms to improve their result [7][8]. GSA works for only 

one population and develops one best solution. In this research 

multiple populations would be developed to give different  

characteristic of the best solutions. This effort has been done 

using Particle Swarm Optimization (PSO) which shows a better 

result compared to the original algorithm. Moreover, a variety 

of strategies have been developed for multiple populations 

purposes [9][10][11][12].  

 Exam timetable scheduling problem has the sensitivity, 
that once a schedule is changed, it could affect other resources 

and even decrease or increase its fitness dramatically. The 
connection between resources gets stronger when the schedule 

is tighter. Combining different characteristics of a schedule is 
expected to give improvement in exploration ability, even if it is 

already in exploitation phase. This research adapts the GSA for 

the discrete problem of exam timetable scheduling at UKRIM 
University using multiple populations to improve the schedule 

fitness by utilizing the different characteristics produced from 
each population, and will measure the schedule generation 

performance. 

II. SCHEDULLING PROBLEM 

Scheduling problem is a combinatorial problem of 

arranging activities with limited resources. The limited  

resources are developed by the system boundary. This problem 

could be solved using iterative mathematics and heuristic 

search, and Linear Programming is an iterative mathematics  
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method that is able to solve this problem. This algorithm could 

give the optimize schedule if the solution exists, but in a 

scheduling problem the solution does not always exist [1]. On 

the other hand, the heuristic method offers an approach as an 

alternative solution. This method has solved some scheduling 

problem such as production scheduling problem using artificial 

bee colony combined with genetics algorithm [13]. A 

development using a heuristic search method, Tabu Search, has 

been used to solve the lecture scheduling problem at university 

of Malaya by modifying the neighbor solutions [14]. Genetics  

Algorithm, which is a later generation of tabu algorithm, has 

also been developed into Cuckoo Search to solve NP-Hard  

problems such as the problem of university timetable 

scheduling [15] [16].Compared to the previous research about 

adapted cuckoo search[15], this research also include how the 

modified algorithm combined using multiple population 

strategy, that resulted in fitness score performance rise.  

 
 The development of GSA which is  based on Particle Swarm 

algorithm [1] turns to be the competition for the Cuckoo Search 
algorithm. In recent years the performance of Cuckoo and GSA 

have been tested for predicting academic performance, where 
GSA is claimed to be inferior to Cuckoo [17]. Developing a 

strategy in an algorithm becomes an option in the maturing 
process of the algorithm to solve the scheduling problem [18]. 

III. EXAM TIME-TABLE SCHEDULLING PROBLEM 

Exam timetable scheduling problem is a variant of 

timetable scheduling problem. Exam timetable scheduling 

problem consists of two constraints: soft and hard constraints, 

and is categorized as a constraint satisfaction problem [19]. A 

violation of a soft constraint results in penalty, while a hard 

constraint must not be violated. However, in this research, a 

hard constraint results in a much heavier penalty than soft -

constraint to improve the combining flexibility. The problem 

deals with how it is  modelled and how the algorithm solves the 

schedule [20]. Instead of using greedy algorithm and put the 

hard-constraint to develop the initial population, this research 

was intended to investigate the heuristic evolving performance.  

 In the case of UKRIM University, the final and midterm 

exams are organized into four sessions per day for two weeks. 

There are two different kinds of room: a classroom that could 

be used for theory exam, and a laboratory that could handle 

theory and practice exam. This research identifies the hard and 

soft constraints for this scheduling problem, and the rule to 

develop the solutions. 

The soft constraints are: 

1. A maximum of one subject for students in the same year 

is allowed in one day. (penalty score: 3) 

2. A big capacity classroom should be used for a big class, 

reducing the use of a big capacity classroom for a small 

class. (penalty score: 2) 

3. Saturday is an alternative day for holding an exam. 

(penalty score: 2) 

4. Exams for difficult subjects should start in the morning . 

(penalty score : 2) 

5. Requested time for exam should be granted. (penalty 

score: 5) 

The hard constraints are: 

1. The classroom must be enough to fit the size of class. 

(penalty score: 15) 

2. Practicum Exam must be held in a laboratory. (penalty 

score: 15). 

3. The parallel classes must start at the same time. (penalty 

score : 15) 

The rule to develop the solutions is that only one subject can 

be held per room per session. 

IV. GRAVITATIONAL SEARCH ALGORITHM 

GSA is a metaheuristic algorithm based on gravity law to solve 

searching problem, firstly introduce in 2009 by Rashedi [2]. 

GSA is based on Particle Swarm Optimization idea. The 

application of this algorithm varies in searching problems, such 

as scheduling problem in Air Traffic Control (ATC) to optimize 

air plane fuel, ticket price and the ATC load itself [21], in  

Allocation Energy problem [22], and in Production problem 

where GSA is said to be better than Genetics and Particle 

Swarm [23]. The problem of searching for Multiple Objectives 

is another problem that can be solved by GSA [24]. 

In GSA the fitness of a solution is referred to as the particle 

mass.  Therefore, a best solution is a particle with the biggest 

mass which attracts other objects around it toward itself by 

changing their acceleration, velocity and distance.  

Gravitational force of two particles is directly proportional to 

their mass product and inversely proportional to the square of 

distance. 

𝐹 = 𝐺
𝑀1 𝑀2

𝑅2         (1)         

Every particle/solution (i) is represented by 

 𝑋𝑖 = 𝑥𝑖
1,… . , 𝑥 𝑖

𝑑 , … , 𝑥 𝑖
𝑛  

Where, i stands for the order of the particle/solution, d is the 

order of particle’s dimension, and n is the number of 

dimensions. Therefore the value of force in ‘t’ times, against  ‘i’ 

and ‘j’ mass is  

 

𝐹𝑖𝑗
𝑑 (𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖
(𝑡) ×𝑀𝑎𝑗

(𝑡)

𝑅𝑖𝑗(𝑡)+𝜀
(𝑥𝑗

𝑑 (𝑡) − 𝑥 𝑖
𝑑 (𝑡))  (2)                          

Where, 

Maj is the active gravitation mass connected with particle j, 

Mpi is the passive gravitational mass connected with particle i,  

G(t) is a constant gravitation at time t; the value of the first G is 

initialized at the beginning, and it is subtracted over time,  

 is a small constant, and 

Rij(t) is the Euclidian distance between two particles. 

𝑅𝑖𝑗 = √∑(𝑥 𝑖
(𝑡) − 𝑥𝑗(𝑡))2    (3) 

In order to give a stochastic nuance, the value of total force at 

particle ‘i’ and dimension ‘d’ becomes 

𝐹𝑖
𝑑 (𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗 𝐹𝑖𝑗

𝑑 (𝑡)𝑁
𝑗=1,𝑗≠𝑖    (4) 

Random function is given with interval 0 and 1, and based on 

Newton’s Second Law of Motion, the acceleration function 

becomes: 

𝑎𝑖
𝑑 (𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
     (5) 

where Mii(t) is the inertia weight from particle ‘i’.  

The velocity and its new position become: 
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𝑉𝑖
𝑑 (𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑 (𝑡) + 𝑎𝑡
𝑑 (𝑡)   (6) 

𝑥 𝑖
𝑑 (𝑡 + 1) = 𝑥 𝑖

𝑑 (𝑡) + 𝑣𝑖
𝑑 (𝑡 + 1)  (7) 

The value of Mi(t) is calculated by dividing average mass 

in a particle with all particles: 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖 (𝑡)−𝑤𝑜𝑟𝑠𝑡 (𝑡)

𝑏𝑒𝑠𝑡 (𝑡)−𝑤𝑜𝑟𝑠𝑡 (𝑡 )
   (8) 

𝑀𝑖
(𝑡) =  

𝑚𝑖 (𝑡)

∑ 𝑚𝑗 (𝑡)𝑁
𝑗

    (9) 

V. ADAPTING GSA IN COMBINATORIAL CASE 

GSA is based on Particle Swarm Optimization (PSO) 

Algorithm, while the main objective of PSO is to solve 

problems in a continuous environment. Hence, an adaptation is 

needed to convert the algorithm to fit in discrete environments. 

This adaptation needs to maintain the main idea of the 

algorithm. A similar effort to adapt continuous metaheuristic 

for discrete cases had also been done by Goldbarg and Yan  

[25][26]. Goldbarg focused on how to generate new particle in  

PSO by the new velocity and distance, while on the other hand 

Yan focused on the algorithm and strategy for the particles to 

be able to avoid worst solutions by using the experience of other 

particles. This research adapts the algorithm to edit the function 

and uses the Goldbarg model to generate new particle but in  

GSA and scheduling case. 

Firstly in this exam timetable scheduling problem the solutions 

or particles is a combination between exam subject, room, and 

session which fulfill the hard-constraints, and then the fitness is 

calculated based on the soft constraints that have been violated. 

Mass is inversely proportional against fitness; with a higher 

violation against the soft constraints, a higher fitness is  gained. 

In the position shift model that is proposed by Goldbarg, every 

element will be shifted closely to target solution with min imum 

cost. 
 

Figure 1. Path Relinking (Goldbarg Et Al, 2008)  
 

 
 

In the swarm concept the first solutions will not be directed 

100% to target solutions, so the third shift on Figure 1 which  

shows the shifting phases in a Travelling Salesman Problem 

will not be executed by algorithm. The velocity and the distance 

will determine how many shifting will happen between two 

particles. In GSA the particle does not go to the best solution 

directly but slightly deviates due to other particles that also have 

a gravitational force. 

The value of Euclidean distance for this case becomes the 

difference between one exam schedule solution to another 

solution. The distance has integer value since it counts the 

difference between two schedule solutions. Therefore, the 

gravity force from each particle signifies the ability of a 

solution to move into another position and is most affected by 

the heaviest mass. The multiplication operator in Formula 2 

becomes the multiplication of normalized weight, and the 

difference between xj with xj is the distance between solutions 

in the same dimension. Furthermore, the value of F is a decimal 

value that shows how many elements will be exchanged in a 

solution. The total force (Formula 4) will summarize all 

gravitational force in a particle, and to gain the acceleration this 

total force value will be divided by its inertia mass. 

Acceleration in this context means acceleration to shift. 

A particle should not go directly into the particle with the 

biggest mass. It therefore needs to develop a temporary target 

solution by combining a part of the biggest mass particle with 

a smaller part of other particles that affect this particle. After 

obtaining the force from all particles, then all the force values 

will be normalized. The force that reaches the threshold will be 

used to affect the temporary target solutions. The particle will 

not be converted into temporary target solutions 100%. The 

acceleration will be converted into velocity using Formula 6 

and converted to distance using Formula 7. The value of 

distance will determine how much shift or crossover will 

happen from a particle to it is target solutions, and the path-

relinking on Figure 1 can be implemented. Because it is not 

possible to convert the position in this combinatorial case into 

a decimal value, in this research the subtraction in Formula 1 is 

removed. 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖(𝑡)×𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡)+𝜀
   (10)  

VI. THE ADAPTATION STRATEGY IN SCHEDULLING PROBLEM 

The steps in the strategy to convert the traditional GSA to solve 

exam timetable scheduling problem are as follows: 

Step 1 Generate the Population 

Generate n random solutions without considering the hard and 

soft constraints. The solutions will then move or shift flexib ly , 

but consequently the size of searching space becomes bigger. 

Step 2 Calculate the fitness or mass 

Calculate the fitness of the schedule by giving score to  every 

schedule solution that has been generated based on the soft and 

hard constraints. There are two kinds of calculations: giving 

penalty for every constraint violation, and giving reward for 

every fulfilled constraint. This research prefers to use penalty 

calculation in order to monitor violations with the aim to reduce 

it. The calculation, however, is reversed by subtracting the high 

value that is not far away from best reward with its penalty. This 

is necessary to maintain the mass concept in GSA, that the 

bigger mass has better fitness. 

Step 3 Initialize the GSA variable 

Initialize the value of velocity. The G constant (Formula 2) will 

be removed from the calculation because in a combinatorial 

case it does not make any big impact to the shifting phase of 

solutions. 

Step 4 Calculate the Force, the Inertia Mass and Accelerations  
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Calculate the gravitational force for every solutions (j) against 

every other solutions (i) using Formula 10. If i equals with j the 

distance is 0. Then calculate the inertia mass using Formula 8, 

and calculate the acceleration using Formula 5. If the inertia 

mass is less than 0 then the inertia mass is assigned with small 

decimal (0.01), and if the inertia mass is equal with 1 then the 

acceleration becomes 0.  

Step 5 Determine the number of shifting 

 To determine the number of shifting for every solution (j) 

against every other solution (i) this strategy considers to use the 

velocities of every solution (i) in solution (j). Every solution (i) 

has the right to shift from 0 to n combinations, while a bigger n 

could lead the solution into conformity with the target particle 

quickly. Then convert the velocity into shift combinations from 

0 to n by mapping it into a defined range for every number. As 

an example, shift is 0 if the velocity value is between 0-1, and 

shift is 1 if the value of velocity is between 1-5. This shifting 

number will be used to develop the deviated solutions. This step 

will be repeated for every solution (j). Furthermore, the solution 

that has the biggest mass will have less move, unless it has 

worthy competitors. 

Step 6 Develop the deviated solutions as addressed solutions  

Get n random parts from the exam schedule from every solution 

(j) that will affect the current solution (i). This step uses one-

way evaluations, because the current solutions do not interfere 

the other solutions to select their part. Then, put the chosen part 

to the deviated schedule without redundancy. 

This step will be repeated for every solution (j). 

Step 7 Shift the current solution toward the deviated solution. 

The deviated solution that has been developed  will replace the 

corresponding part in the current solutions. This step will be 

repeated for every solution (j). 

After step 7 this algorithm will be repeated from step 4 until the 

maximum iteration or the aimed fitness/mass value has been 

reached.  

The fitness graph in Figure 2 shows how the fitness develop 

from 15 solutions for 30 iterations. The highest number of 

fitness is reached in the latest iteration. The peak is not always 

found in the last iteration, but it could also be found before. This 

happens because the population is still able to move the biggest 

mass, as long as it finds a worthy competitor, and the shifting 

could lead into higher or lower fitness. In the other word the 

fitness graph does not always have an upward trend. 

Furthermore, increasing the number of solutions and iterations 

cannot guarantee the finding of a better fitness. It does, 

however, improve the chance of it. Figure 3 shows the fitness 

development with more initial populations and iterations. The 

fitness or the mass score develops to more than 1700. The 

highest fitness is not always the same, but varies depending on 

the initial populations. This algorithm adaptation strategy will 

move every solution based on the solutions that have already 

been generated in the populations. The solutions would not 

move their exam subject if no exam subject is plotted in the 

resource such as room and session. As an addition, if there is no 

subject being plotted in the resource then there is no experience 

or assessment. These conditions could be an advantage or 

disadvantage, because every chance should be tried in the case 

of combinatorial problems. In the concept of GSA there is no 

evidence that a particle will move without being interfered by 

another particle. 

The different results for every execution caused by the random 

generation in the initial population leads this research to extend 

an additional strategy by using multiple populations. 

 

Figure 2 .Fitness graph with 15 solutions and 30 iterations 

 
  

Figure 3. Fitness graph with 70 Solutions and 500 iterations 

 
 

VII. THE MULTIPLE POPULATION STRATEGY 

All particles in a population will affect each other, and they 

develop the biggest mass or fitness together. The iterations 

create the development pattern and have less move for the 

highest solutions in the last iteration (see Figure 3). However, 

the populations need potential input from different patterns as a 

different point of view to develop the solutions. This strategy is 

adopted from Multi Swarm Optimization that uses more than 1 

swarm to develop the searching space. 

Step 1 The strategy start with develop p population and each 

population will develop n solutions.  

Step 2 Execute every population using GSA algorithm. 

Step 3 When all the populations have been executed and already 

in convergence, inject the best solution from each population to 

all of the populations as additional solutions 

Step 4 execute every solution again using GSA  

Step 5 Get the best solutions between all of the populations  

The second execution could use a different maximum iteration  

depending on the value of p. The best solution from p 

populations is the final result. This process is shown in Figure 

4.  

Figure 5 shows the result with 10 populations (from 0 to 9) that 

have been optimized using GSA, and the next populations are 

the 10 initial population that have been injected with the best 

solutions from every initial population, then executed again 
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using GSA. The result shows a gradual increase of fitness score 

at the end of the process, from 1742 points as the best solution 

from the initial population to 1793 points as global best. Since 

the other populations cannot find more than 1779 points in that 

state, the best solution is steady. The Global Best was resulted 

in 9 hard-constraints violations. These violations happen as 

consequences for letting the hard-constraint behave like soft-

constraint with bigger penalty. 

The graph in Figure 6 shows the best solutions before and after 

being injected by the best solutions in each populations in 15 

experiments. The graph shows increasing trend of fitness in  

most of experiments after being injected. Yet, there is an 

anomaly: the score did not change in the second experiment , 

this is due to the populations could not find the best, even after 

injection. 

This method requires more time and computation effort, 

because it will execute more populations in order to escape 

from local optimum. If there is 10 populations in the 

initialization state, then it needs 10 times computation effort  

than single GSA with the same number of iterations, plus 

computation effort to execute again after being injected by best 

solutions from another solution. However, after reach the 

convergence state, GSA will get the same result for the rest of 

the iterations, then with the same big number of iteration  

between GSA and MPGSA, MPGSA will resulted in higher 

fitness score.  

 

Figure 4 Flowchart of Multi Populations GSA 

 
 

Figure 5. Fitness graph with 10 populations, 70 solutions 

each, 500 iteration each   

 
 

Figure 6. Fitness graph Comparison between before and after 

injection 

 
 

VIII. CONCLUSION AND FURTHER RESEARCH 

The adaptation strategy could be implemented in the exam 

timetable scheduling problem and resulted in improving the 

value of fitness/mass. Every solution will be involved with the 

gravitational rule based on the mass of every solution to 

develop the best solutions. The solutions will move their 

particle based on the last path of other worth population’s 

particles and will not move to the unexplored area Although the 

key parts lay in the unexplored area, however, if the solutions 

is not good enough, it will be ignored. 

The multiple populations strategy helps the development of 

fitness factor by providing potential solutions from other 

populations, and resulted in improving fitness (with an average 

of 32.26 points according to Figure 6), but definitely need more 

computation effort.   

There are also some aspects that need to be examined for further 

research: 

a. In the algorithm section, adding a strategy to move the 

solutions without considering another neighbor solution 

could be conducted in order to explore the unexplored area, 

even if this violates the conceptual of GSA.  

b. There is a need to explore the strategy to develop offspring 

solutions in GSA.  

 The strategy of multiple populations in this research could 

be developed using multithreading technique, which allows  

boosting by using General Processing Unit (GPU). 

Developing another strategy and comparing it with current 

strategy is also needed to find the best fitness. 

c. This research also could be developed to investigate which  

adaptation strategy is the best between the novel algorithm 

such cuckoo search or the modified mature traditional 

algorithm such as genetics algorithm. 
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