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Pretrained Configuration of Power Quality Grayscale Image Dataset for Sensor
Improvement in Smart Grid Transmission

Abstract

Since real-time data exchange via a network of various sensdZ demands a small file size
without adversely affecting information quality, one measure of power quality monitoring in a
smart grid is restricted by the vast volume of data collection. In order to provide dependable
and bandwidth-friendly data transfer, the data processing techniques' effectiveness is evaluated
for precise power quality monitoring in wireless sensor networks (WSNs) using Grayscale PQD
Image data and employing pretrained PQD data with deep learning techniques such as Resnet50,
MobileNet, and EficientNetB0. The suggested layers, added between the pretrained base model
and the classifier, modify the pretrained approaches. The results show that EfficientNetBO
outperforms the other pretraining methods evaluated generally, outperforming them with the
accuracy of 99.10%, training accurgfily of 99.55%, and validation accuracy of 98.58%. This is
a good fit model, as evidenced by training and validation loss that diminishes to the point of
stability with a negligible disparity between the two final loss values. The preprocessed data's
output is anticipated to allow for reliable and bandwidth-friendly data packet transmission in
WSNSs.

Keywords: Pretrained methods, PQDs, sensor network
1. Introduction

The process of developing and delivering power to end users has remained fairly stable
over the years. In a traditional grid, Figure 1, power systems are built on a few controlled and
massive power sources, primarily hydroelectric or fossil fuel-based energy production systems,
with a vast transmission network supplying power to customers through a distribution system. The
electricity supplier creates a consumption plan based on historical data from their customers and
orders electricity from the power plant based on that plan. This is possible because fluctuations in
energy use were low in the past, and the transmission system was generally reliable. This is
significantly different from today when large fluctuations in electricity usage make the
transmission system more unreliable. As a result, a technological upgrade from the conventional
grid is required to change the existing grid into a high-performance grid with huge potential.
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Figure 1. Traditional grid system [1]

Due to this transition, the smart grid has attracted much research interest in the past ten
years. The emergence of smart grids becomes a solution when traditional networks are no longer
adequate for implementation in the power system. Since traditional electricity systems are inactive
due to directional power and communication transfer, the integration and contribution of every
distributed energy resource in the smart grid environment makes ita dynamic grid due to two-way
electricity and data flows [1]. Smart networks use the information other than historical data. It
constantly monitors what is going on in the network and handles the flow of electricity directly.
The software that collects, analyzes, and independently decides how energy will be distributed is
at the heart of the smart grid. The information gathered by energy suppliers from many sources is
thereby processed in a single location, making the power grid far more predictable, adaptable, and
trustworthy. The smart grid collects information from smart meters and other intelligent sensors,
including 10T devices (IoT - Internet of Things).

Since the traditional power system is being transformed into a more efficient and reliable
smart grid, this shift places increased strain on a couple of centuries of power grid infrastructure,
necessitating further expenditure to guarantee safe and consistent electricity delivery to consumers.
The smart grid is made up of a vast number of sensors, gadgets, measurement units, and computers
that are linked by a pervasive network, which is the ultimate source of various Power Qudty
Disturbances (PQDs) concerns. International standards for categorizing electrical disturbances that
affect the grid or tlffj user have been developed because PQ is a crucial prerequisite for smart grids.
The methods @d threshold values that define an electrical disturbance, such afan overvoltage,
undervoltage (sag or dip), fluctuation, harmonic distortion, etc., are laid forth in the PQ definition
provided by the standards IEEE-1159 [2] and EN-50160 [3].

Among the available methods to monitor the above disturbances, data acquisition with
traditional wired systems may certainly result in considerable repercussions concerning the
operator’s safety [4]. On the other hand, using a Wireless Sensor Network (WSNs) eliminates
these shortcomings and makes the data acquisition much safer [5]. Remote monitoring of multiple




machines can be achieved through one receiving station. Moreover, most wired sensor networks
use lengthy cables to deliver the acquired data to the central computer. These cables are subjected
to wear and tear, leading to channel losses. Thus, the use of a WSNs in data acquisition does not
only contributes to its safety but also to its economy.

A WSNs is a system made up of several computational and sensor units dispersed
throughout a monitored environment. WSNs have been used to automate the usage of computer,
sensor, and wireless communication equipment for both academic and commercial applications
throughout the past few decades. ZebraNet, for instance, was created to track wildlife. The purpose
of CitySense is to provide weather and air quality reports. The Sensormap portal was created to
provide services for genetic monitoring. Designing specialized systems like the one above has
received more research focus to meet application-dependent service needs [6].

WSNs are employed for a wide range of purposes, which frequently need real-time data
transfer. A well-known obstacle to WSNs implementation is bandwidth restriction, which results
in the sample rate and sensor number limitations. This can be resolved by decreasing extra using
compression techniques and an occurrence communication method [7].

Some computations must be performed by the smart meter online to identify PQ, while
others need an off-line strategy like disturbance propagation. As a result, the smart sensor network
must perform some computations while relying on a big-data post processor for others. A general
smart sensor in a smart grid system is shown in Figure 2.

Smart sensors can be discreetly installed inside several structures, including private
residences, commercial buil@ings, and public buildings. This smart sensor incorporates a wirelegg
Bluetooth communication module, a large storage device, and a data gathering module. A
microprocessor, real-time clock, internal data bus, universal serial bus (USB), and various soft-
cores f@Hjignal processing are also included. The network of smart sensors is integrated @to the
system using a mobile device, such as a smartphone or tablet, to integrate and remotely monitor
them. The system generates a significant amount of data, which is then processed further in a big-
data center. The system does not need to be powered off to connect the smart sensors because they
are not obtrusive. This makes the system very simple to use. Itis also incredibly adaptable because
it supports a wide range of current and voltage levels and a variety of programmable soft-core-
based processing capabilities.
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Figure 2. Smart sensor in smart grid system [8]

One measure of power quality monitoring is constrained by the enormous volume of data
collection since real-time data sharing over a network of numerous sensors requires a small file
size without compromising information quality. Delivering power quality monitoring services is
difficult as a result. This problem is addressed by evaluating the effectiveness of data processing
techniques for precise power quality monitoring in WSNs using 2D Regulated Grayscale PQD
Image data from recent research findings and providing pretrained PQD data using deep learning
techniques such as Resnet50, MobileNet and EficientNetBO in order to provide dependable and
bandwidth-friendly data transfer.

The following are the primary contributions of this work:

e Anexperimental evaluation of dataset pre-training methodologies has been conducted for
online PQD classification on WSN nodes with constrained computing capabilities,
constrained internal storage, and low energy consumption. To the extent of our knowledge,
earlier PQD research only provided ResNet data for pre-training. While this is occurring,
it is still difficult or challenging to locate references to the implementation of MobileNet,
and EfficientNetBO pre-training on PQD.

e Investigates how responsive response-based 2D depth CNN power quality classifiers are
to substantive improvements in field power quality. Because the PQD data utilized for the
power quality classifier was synthetic, PQD was developed using a mathematical model




with parameter changes in line with IEEE Std. 1159, earlier research had difficulty
identifying real disturbances because the model was an abstraction from reality.

The following are the contents of this study. Section 1: Introduction, section 2 describes
the prior works that provide the background for the current topic. Section 3 proposes data EE}
solutions for addressing the presented situation. Section 4 describes data-driven validation and
discusses the results. Finally, section 5 concludes the paper and presents future work.

2. Related Work

It has been determined that categorization and abnormality detection are crucial methods
for preserving power quality. Th@fpomputational speed of the algorithm for classifying and
detecting disturbances is the most critical aspect to take into account in the context of the smart
grid, intending to send information on consumption and disruptions to utilities via a two-way
communication infrastructure. In other words, the computational speed must be compatible with
the bandwidth and data transfer speed.

One-dimensional (1-D) and two-dimensional (2-D) datasets are two novel dataset-based
methodologies for finding and classifying PQD. In past research, the main goal was to improve
PQD classification performance in 1-D Convolutional neural networks (CNNs). The most
effective methods, CNNs, are frequently used in PQD classification research [9]. The current
technique uses a 1-D CNN algorithm and principal component analysis (PCA) to categorize data
using 1-D PQDs. The wind-grid distribution system, a wind-energy-based renewable energy
system conceived and developed to distribute electricity to the grid, uses this technology [10].
However, past research on the problem of training time was limited because of the vast data
volume. Large data files are generated in PQ monitoring as a result of the high sample rate and
amount of measurement points [11].

A data compression approach is necessary to shorten the amount of time calcul@bns take
during the training stage [12]. Signal compression algorithms have been proposed to reduce the
amount of data that needs to be saved. Recently, there has been some scientific interest in CNN
compression. In order to save storage costs and enable Fast Fourier Transform to speed up
computing, this work [13] suggests replacing traditional linear projed#n on the completely linked
layer with circular projection. A different study [14] aims to reduce the network's total number of
parameters and operations. The computing workload and parameter size can be significantly
reduced using the pruning approach. However, significant PQD data would be lost as a result of
the compression process.

Since 2-D images can include more PQD information than 1-D signals, an image
conversion approach has been developed in recent years to make it easier to use CNN for PQD
classification. PQD signals are 1-D signals that require data pre-processing to transform into 2-D
images. In the study in [15], the PQD classifier is immediately trained using the signal-waveform
picture, and in [16], the sagRignal is converted into the PQD image using the space phasor diagram.
While prior studies ugjd a three-channel format comprising data for red, green, and blue hggs
(RGB), [17] displays an image transformation matrix where the PQD signal’s sample points are
rearranged in the matrix before being turned into a grayscale image. Nevertheless, as [ 18] §@hsition,
certain crucial elements are utterly lost. According to Karasu's method in [17] and [19], when the
fundamental frequency deviates from its nominal value, rearranging the picture transformation
matrix leads to classification error. Because the fundamental frequency varies, the time locations




of PQD would decrease. The approach has a training accuracy of 98.69%, while Zheng's method
[20] has a training accuracy of 97.98%.

The fundamental frequency variation was detected, and the image matrix was controlled
by the IEC-based synchronizer to enhance classification performance. The controlled 2D grayscale
image can maintain the signal's information and waveform characteristics. The results of the
testing and field measurements showed that the suggested strategy was more effective than the
previously used approaches and could boost the PQD classification's effectiveness with an
accuracy of greater than 99.79 percent [21].

The optimum PQD classification method is still being researched in order to enhance
system reliability in a power system. Many researchers use enhanced CNN architecture,
specifically Residual Neural Network (ResNet), to perform multiple PQD analyses. According to
research [22], ResNet-18 outperfor§f other CNN designs in terms of accuracy (95.77 percent)
when compared to other Classifiers such as basic CNN, Deep CNN (DCNN), and GoogLeNet. In
comparison, the MobileNetV2 classifier is built and tested to classify the quality of surface water.
The testing findings reveal that the clagfifier performs admirably and can be easily implemented
on edge devices [23]. The foundational EfficientNet-B0 network is builEjpn the inverted bottleneck
residual blocks of MobileNetV2, as well as squeeze-and-excite blocks. With an order of magnitude
fewer parameters, EfficientNets transfer well and reach state-of-the-art accuracy on CIFAR-100
(91.7 percent), Flowers (98.8 percent), and three other transfer learning datasets [24].

3. Research Methodology
3.1. Transfer Learning

DCNN is extremely good at identifying low, medium, and high-level features in images
and stacking additional layers, resulting in higher accuracy overall. Because deep neural @twork
architecture is comprehensive and design complex, a valuable technique known as transfer
learning can be employed for a specific type of task. Transfer learning (TL )i a strategy for solving
other similar problems by employing a pretrained model on a dataset as a starting point and
adjusting an@@pdating its parameters to fit the new dataset. When performing the model training
process, the TL model will assist reduce the amount of data utilized, the calculation procedure,
and the calculation time [25].

3.2, Pretrained Deep Learning Network (4]

With fixed weights for the specific application, a pretrained netw@irk has already learned
to retrieve powerful and valuable features from natural photos. When the dataset is small, and the
application domain is related, pretrained networks can be deployed. Moreover, it takes time and
@bmputing power to train CNN from the beginning. According to the study [26], employing
weights from a distant task may improve performance compared to randomly initialized weights.

There are currently a ton of pretrained CNN, such as ResNet, MobileNet, EfficientNet, et
cetera. In some cases, several pretrained networks deliver exceptional performance. The current
study looks into the ideal CNN network configuration for PQD classification in light of the
excellent performance. The pre-training netw@# was chosen based on its ease of use and its most
excellent performance in prior iterations of the ILSVRC (Imagenet Large Scale Visual
Recognition Challenge) competition. Other factors considered include the network's time and
space complexity, error rate displayed in the ILSFRC challenge, and more.




Table 1. Summary of ImageNet performance

Model Size Top-1 Top-5 Parameters Depth Time Time
(MB) Accuracy Accuracy [27] per [27] per
inference inference
step step
(CPU) (GPU)
ResNet-50 98 74.9% 92.1% 25.6M 107 58.2 4.6
MobileNet 16 70.4% 89.5% 4.3M 55 22.6 34
EfficientNetBO 29 77.1% 93.3% 5.3M 132 46.0 4.9

Table 1 highlights the ImageNet performance, an images database arranged according to
the WordNet hierarchy, with hundreds of millions of images representing each node of the
hierarchy. The data demonstrates that the EfficientNets-BO outperforms other pretrained models
significantly. EfficientNetBO, in particular, use 5.3M parameters; has a running time of 4.9 ms for
each inference step (GPU) and achieves 93.3 percent in the top 5 accuracy. In comparison to
MobileNet, which computes 4.3M parameters in 3 4 ms per inference step (GPU) but only achieves
89.5 percent top-5 accuracy. The widely used ResNet-50 has a top-5 accuracy of 92.1 percent
using 25.6M, 4.6 ms per inference step (GPU). With a 99.62% accuracy rate, improved
EfficientNet outperformed a number of the well-known DCNNss that had been previously released,
including ResNet [28] and MobileNet [29].

4. Expfiiment and Result
The experiments are carried out to evaluate the performance of the three different
pretrained CNNs, ResNet-50, MobileNet, and EfficientNetBO, when PQD classification is
applied to the photos from the signal power quality dataset of the Amrita Honeywell Hackathon
2021.

4.1. Data and Hardfare

The dataset used in this study consists of signals divided into the following five power
quality categories: normal, third harnfghic wave, fifth harmonic wave, voltage dip, and transient.
A nominal fundamental frequency (f) in the range of 59.5 and 60.5 Hz, two sampling cycles (Nc),
and 128 sample data points (Ns) are used to describe each signal. With a total of 11,998 raw data,
the following power quality conditions are described in relation to the output class value: normal
(1,998), third harmonic wave (2,000), fifth harmonic wave (3.000), voltage dip (2,000), and
transient (3,000).

The used hardware is a MacBook Air with the following features: 8 GB of RAM, a 16-core
Neural Engine on the M1 chip, a 7-core GPU, and an 8-core CPU with four performance cores and
four efficiency cores. The learning model was implemented utilizing a Google Colab-accelerated
GPU and a Wi-Fi 802.11ax Wi-Fi 6 connection to the internet.
4.2, Data Pre-processing

Pre-processing data is essential in preparation and modification before being utilized in
model training. When the range of thdilata samples fluctuates, normalization is a frequent data
processing technique where numerical column values are changed to have a uniform scale. Before
using the data to reconstruct the dataset into two dimensions, the data must be scaled into a value




range of -1 to | as part of the normalization process since the power quality distribution of one-
dimensional dataset value has a wide range, especially between -7,185 and 11,997. The raw power
quality distribution datjin this study were handled in the data pre-processing phase, which
includes the two steps of signal synchronization (SS) and image regulation (IR ), as shown in Figure
3.
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Figure 3. The stage of data preparation
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g the SS stage, the fundamental frequency obtained from the IEC (Standard 61g0-4-7)
based synchronizer is used to calculate the regulated cycle duration in accordance with the
fundamental frequency variation. After the PQD signal has been properly separated using the
acquired fundamental frequency, the 2D grayscale picture matrix will be controlled in the IR stage.
The crucial step in data preparation is determining the submatrix dimension. The square submatrix
has precisely as many columns (N,,;) chosen as rows (N,,,,). The PQD signal should then be
divided into several cycles. The f value determines the N. cydg}s of the PQD signal. Third, take the
divided cycles and generate submatrices. Step four should merge the submatrices to produce a
controlled matrix. Fifjlly, take the controlled matrix and turn it into a 2D grayscale image. The
matrix's components are converted to the grayscale color space to create the grayscale image (0—
255). Nrow X Neol pixels are the size of the final image [21]. 5B output of a controlled 2D grayscale
image produced using the previously mentioned technique is shown in Table 2.

Table 2. Power quality disturbances signal form and 2D grayscale image

Normal 3" Harmonic 5" Harmonic  Voltage Dip Transient

PQD 1-D ; ‘

Signal a ‘
PQD 2-D
Image

The disturbance classification stage would then process the regulated feature image to complete
the PQD identification.

4.3. Method
According to Figure 4, the research process for this study was divided into six p@ts. Create
a CSV file first containing the power quality signal dataset for the first five classes. In the data




preprocessing stage, the signal dataset is initially normalized. Third, the normalized dataset
produces an image format with a metric resolution of 64 x 64. In the fourth step, model training
data accounted for 80% of the dataset used for model learning, while model validation data made
up 20% of the dataset. In many areas, splitting information into ratios is a common practice when
utilizing machine learning or deep learning models to solve problems. Additionally, 200 test results
were given to each category, totaling 1,000 test results divided among five classes.
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Figure 4. Stages of research method

The model training stage is the fifth stage. Resnet50, MobileNet, NASNetMobile, and
EficientNetBO0 transfer learning modelgtrained models) for PQD classification were employed in
this work because they are among the best-performing transfer learning models (trained models)
commonly utilized by researchers for image classification. The performance of the 2D deep CNN
model in recognizing PQDs was evaluated based on the training model in the sixth stage. Figure 5
illustrates the model structure of the applied 2D deep CNN, which consists of four convolutional
layers, two maxpooling layers, and one dropout layer before two fully connected layers. Therefore,
the model's performance outcomes were assessed using the accuracy, recall, precision, and fl-
score [30].

44. Proposed Layers

This study modified pretrained methods to dig more information from the PQDs dataset. The
proposed layers are placed between the based model of pretrained and classifier. Figure 5
illustrates proposed layers for EfficientNetBO, MobileNet, and ResNet50 composed of a Global
Average Pooling 2D (GAP2D), Dropout layer, and Batch Normalization. To avoid cases of
Ektreme overfitting caused by the advanced feature management, a pooling layer was introduced.
By rescaling the height, {gfith, and depth of the incoming tensor from the base model, the GAP2D
layer could significantly reduce the number of parameters. By switching to the dense layer at this
stage, which can overwhelm the classifier, the massive inflyg§of characteristics is controlled. The
feature maps were not entirely diminished by the GAP2D. Instead, it averaged the entire spatial
data set and retained the most complex patterns necessary to identify the image [31].
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Figure 5. Proposed layers for advanced pretrained model

The feature sets from the GAP2D are directed to a dropout layer and batch normalization layer.
Furthermore, the model connected the classifier with SoftMax activation and five neurons
representing five given labels.

4.5. Hyper{fjarameters Value
The hyper-parameter settings and loss function used for the task to yield effective results
are described in thigggction.

A DL model’s performance is meagired not solely in terms of accuracy but also in terms of
loss. [32]. The model seeks to achieve its lowest rate of mistakes since a model with a smallg}
computed loss is more effective [33]. The cross-entropy [34] loss function is used in this work to
obtain the average measure of the difference between the expected and forecast value. The loss
measurement for binary classification is shown in Equation (1), where y represents the binary
values of 0 or 1, and p is the probability [35].

CE = —(ylog(p) + (1 = y)log(1 —p)) (1)
2

The Adam optimizer was used in this work to provide optimal E)ss reduction during
training. This optimization approach works as an adaptive gradient descent function, allowing for
faster weight loss towards local minima [36]. When compared to alternative optimizers such as
@hochastic Gradient Descent (SGD) [37] or RMSProp [38], the Adam optimizer was chosen
because of its ease of implerfftation, efficient memory usage, and speedier learning phase.

Table 3 displays the hyper-parameter settings. A low learning rate (LR) works well with
the other hyper-parameters specified. The 32-batch size provided enough load to transport data
across the network without using all the computing memory. Furthermore, we chose durations
within 50 epochs to train each model incrementally to see how it would perform.

1
Table 3. Hyper-parameters specified for training

Hyper-parameters Value

Learning Rate 0.0004
Batch Size 32

Optimizer Adam
Dropout 0.5

Epoch 50




4.6. Results

This section reviewed the results gained from the prepared dataset throughout the
validation and training stages. The outcomes of evaluating the deep learning networks
EfficientNetB0O, MgFjileNet, and ResNet50 in the PQD classification task on the actual PQD
images dataset are presented in Table 4.

Table 4. Performance of pretrained deep learning network for 2D grayscale images PQDs

dataset
Accuracy (%)
Network Training Validation
EfficientNetB0 99.55 98.58
MobileNet 98.90 97.46
ResNet50 99.03 96.85

11
Training learning is calculated from the training dataset. It provides information about gw well
the model is learning, whereas validation learning is calculated from a hold-out validation dataset
and how well the model generalizes. Compared to MobileNet and ResNet50, the data from the
table shows that EfficientNetBO produces very accurate deep learning solutions for identifying 2D
grayscale images from the PQD dataset with a training accuracy of 99.55% and validation accuracy
of 98.58%.
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Figure 6. Training and validation progress of EfficientNetBO

Figure 6 depicts that the EfficientNetBO0 training process is a good fit model, as indicated by a
training and validation loss that decreases to the point of stability with a minimal gap between the
two final loss values.
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Figure 7. Training and validation progress of MobileNet

Figure 7 depicts an example of MobileNet overfitting. It may arise if the model is trained for
inordinately extended period. The 30™ epoch may be the inflection point in validation loss, as
experience after that point illustrates the dynamics of overfitting.

Nanaas
i ﬂﬁ/
o= "
8 06 —— Taining Accuracy
§ — Validation Accuracy
g Faining Loss
h 04 —— Validation Loss
|
02 1
0.0 1
0 10 20 30 40 50
Epochs
Figure 8. Training and validation progress of ResNet50

Figure 8 shows that the training and validation learning curves of ResNet50 demonstrate a training
dataset that may be too small compared to the validation dataset. Both learning curves can identify
this situation for training loss and validation loss showing improvement but after the 35th epoch,
a slight gap remains between both curves.

A specialized metric called the Confusion Matrix (CM) shows how well a trained model
can forecast from a given validation dataset. A 3rdHarmonic, SthHarmonic, Normal, Transient,
and Voltage Dip are the true class and ground truth labels shown by the CM's correspcffiling rows
and columns. The projected results provide the proportion of accurate gZid inaccurate predictions
or classifications for each validation sample. Following the values, the accuracy, precision, recall,
and F1 score of each model are computed. The recall value indicates how many times the model
was able to detect a specific category. Precision is the frequency with which a model correctly




predicts an actual clggf The total number of accurate predictions made from all available samples
is the accuracy. The F1 score is also the weighted average of the recall and precision values [39].

Table 5. Comparison of classification performance

Network Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EfficientNetBO 99.10 98.60 9900 98.80
MobileNet 99.32 99.00 99.20 99.20
ResNet50 99.55 99.20 99 .40 99 .40
Basic CNN 098.99 98.60 98.80 98.80

EZable 5 computes the total performance of the classification using pretrained model based
on its accuracy, precision, recall, and F1-score using the CM matrix. From the examined finding,
Resnet50 achieved the highest accuracy of 99.55%, followed by MobileNet with 99.32% and
EfficientNetBO with 99.10%. However, in the training performance of EfficientNetBO, its
accuracy is better than ResNet50, while the accuracy of MobileNet is improved for lea smaller
number of epochs rather than the training performance of ResNet50. As shown in the architecture
and way of implementing all the models ResNet-50 has more parameters, 25.6 MB, to be used, so
it is obvious that it will show better performance compared to the EfficientNetB0 and MobileNet.
ResNet50, on the other hand, requires a more extensive data capacity of 98 MB.

The most severe resource limitati) on WSNs during implementation for smart grid
objectives is restricted battery energy. Transmission power control and data packet size
optimization are effective strategies for increasing network lifetime and lowering energy
consumption [40]. As a result, this study suggests that MobileNet and EfficientNetBO pretraining
models be used for 2D grayscale images PQD data classification. The MobileNet basic model
requires only 16 MB of data size. The EfficientNetB0 base model requires 29 MB of data size.
Furthermore, the compute times for both models are 22.6 ms and 46.00 ms, respectively,
comparing the ResNet50 compute time of 58.2 ms per inference step (CPU) and the base model
requiring 98 MB of data size. At the same time, three models’ accuracy differs slightly.

5. Conclusions and Future Work

Previously, an experimental evaluation of ResNet dataset pre-training approaches for
online PQD classification on WSN nodes with limited processing capabilities, internal storage,
and low energy consumption was carried out. However, references to the implementation of
MobileNet and EfficientNetBO pre-training on PQD are still challenging to find. As a result, this
work took the initiative to examine contemporary CNNs for classifying and detecting PQDs
utilizing MobileNet and EfficientNetBO data pretrained approaches. Pretrained techniques are
modified by the proposed layers, which are inserted between the pretrained base model and the
classifier. This research also looks into how responsive response-based 2D depth CNNs power
quality classifiers can lead to significant improvements in field power quality.

Since ResNet-50 has a greater number of parameters, 25.6 MB, upon evaluation with
11,998 raw data images, CNNs classifier utilizing Resnet50 achieved the highest accuracy of
99.55%, followed by MobileNet with 99.32% and EfficientNetBO with 99.10%. However, ifgEhe
training performance, the accuracy of EfficientNetBO is better than other pr§grained methods, with
a training accuracy of 99.55% and validation accuracy of 98.58%, which is a good fit, as indicated




by a training and validation loss that decreases to the point of stability with a minimal gap between
the two final loss values.

As aresult, compared to the basic deep CNN classification technique, the transfer learning-
based EfficientNetBO, MobileNet, and ResNet50 could efficiently improve classify 2D deep CNN
using regulated 2D grayscale images. EfficientNetBO surpasses the other pre-training methods
evaluated in general. The outcome of the preprocessed data is assumed to enable reliable and
bandwidth-friendly data packet transmission in WSNs. The modest number of data samples
obtained during the training procedure limits research with real data. As a result, we advocate
doing more studies that include collecting additional data from other smart grids using various
sensor devices.
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